WEEKLY PLANNER: ALL SCIENCE WEEK

OF 2.25.19

Mid-terms are March 4th

Objectives for the week: Bio.3.2.2 Predict offspring ratios based on a variety of inheritance patterns (including dominance, co-dominance, incomplete dominance, multiple alleles, and sex-linked traits). Bio.3.2.3 Explain how the environment can influence the expression of genetic traits. Chm.2.2.4 Analyze the stoichiometric relationships inherent in a chemical reaction. Chm.2.2.5 Analyze quantitatively the composition of a substance (empirical formula, molecular formula, percent composition, and hydrates).

Дау	Honors Biology	Honors Chemistry
Mon	-turn in pre-test	-turn in molecular shapes lab
9 95 10	corrections	& pre-test corrections
2.20.19	-DISCOVERY LAB:	-DISCOVERY LAB: the mole
	https://learn.genetics.utah.edu/content/	http://www.physics-chemistry-interactive-flash-
	basics/karyotype/	animation.com/chemistry_interactive/mole_molar_ma
	-NOTES! Genetics	http://www.wiredchemist.com/anim-mole
		-NOTES! Moles
	*HW= Monohybrid	
	crosses: EVENS only on	*HW= the MOLE concept
	both sides.	worksheet.
Tues	GO over HW	Go over HW
2.26	-notes: test crosses and	-notes: stoichiometry and
STUDY	dihybrid crosses	moletown
BUDDIES!		-team activity:
		http://chemcollective.org/activities/tutorials/stoich/the
	*HW=DRAGON dihybrid	*HW=pg 50, show all work
	cross, Genotype vs.	units and UNITS OF
	nhenotype??	
	phonotype	VVIIAI:::: Kanon diatomics, Kalil F.Units
		3 rd : What is the mass of Calcium
		Chloride in amu?
		What is the mass in grams?
		How are they similar and different?
Wed 2.27	COLLECT practice test	Collect practice test
STUDY	corrections	

BUDDIES!	-Virtual genetics lab https://learn.genetics.utah.edu/content/ pigeons/pigeonetics/ -Finish notes! *HW= pedigree packet pg #1-4 ©	from ACT day -Finish notes! Virtual activity: http://collective.chem.cmu.edu/stoich/mole.php *HW= do pg 50-53 show work!
Thurs 2.28 Friday 2.29	LAB: BABY DRAGONS!!! *HW= dragon questions (10), dragon picture. Psst are you reading this? Click on the physics button at the top of the page. https://www.youtube.com/watch?v=a0ur PofZiuY -HAND in EVERYTHING Everyone's zip grade ID= last 5 digits of your student # TEST https://evansccca.weebly.com Mid term REVIEW make up 4 questions per objective 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 4.1, 4.2	LAB: Moletown! *HW= STUDY! Finish Moletown Psst are you reading this? Click on the physics button at the top of the page. TEST (on everything covered this week) -FINISH MOLE NANOBOT PROJECT MID TERM REVIEW make up 10 questions per objective 1.1, 1.2, 1.3

Moles digging <u>https://www.youtube.com/watch?v=toARdZKs-IE</u> TED-ed mole <u>https://www.youtube.com/watch?v=TEl4jeETVmg</u>

3" BLOCK ESSAY!

#24) Convert 2500 dm' of CO₂ to atoms.

#25) Convert 3.9 x 10²⁴ atoms of

lodine to grams of lodine

Warm up activities!

Monday 2.25.19- https://evansccca.weebly.com/

BIO Warm up:	CHEM Warm up:
Turn OFF your cell phone and	Turn OFF your cell phone and
put in bin ©	put in bin ⓒ
https://learn.genetics.utah.edu/co	https://www.texasgateway.org/resourc
ntent/basics/dnathings	e/moles-and-molar-mass
What did you learn from this video???	1 Mole carbon =

I UCSUAJ LILVILY

https://evansccca.weebly.com/

BIO Warm up:	CHEM Warm up:
Turn OFF your cell phone and	Turn OFF your cell phone and
put in bin	put in bin
https://www.youtube.com/watch?v=pv3Kj0UjiLE	<u>https://www.youtube.com/watch?v=TEl4jeETVmg</u>
Describe genes and alleles.	How big is a mole?

Wednesday 2.27.19- https://evansccca.weebly.com/

BIO Warm up: Turn OFF your cell phone and put in bin Describe how two white mice with brown eyes can have a baby with white fur and red eyes.	CHEM Warm up: Turn OFF your cell phone and put in bin Convert 12 g sand to moles of sand.

Thursday 2.28.19- https://evansccca.weebly.com/

CHEM Warm up:
Turn OFF your cell phone and
put in bin 😳
Convert 9.3 x 10^{24} atoms of carbon
to grams of carbon.

Friday 3.1.19- https://evansccca.weebly.com/

BIO Warm up: Turn OFF your cell phone and	CHEM Warm up: Turn OFF your cell phone and
put in bin 😳	put in bin 😳
BIOLOGY see below-	Convert 500 g of Oxygen gas to molecules of Oxygen gas.

B = brown eyes b = blue eyes H = brown hair h = blonde hair h = blonde hair		B = Browneyes b = blue eyes H = brown har h = blonde he	r	
	BH	Bh	ЬН	bh
ВĦ	BBBH	BB Hh	BbHH	BbHh
	Brown eyes	brown eyes	brown eyes	brown eyes
	Brown hair	brown hair	brown hair	brown hair
Bh	BBHH	BBhh	BbHh	Bb hh
	brown eyes	brown eyes	brown eyes	brown eyes
	brown air	blorde	brown hair	blond e hair
ЬĦ	BbHH	BbHh	bb HH	bbHh
	Brown ges	brown eyes	blue eyes	blue eyes
	Brown hair	brown hair	brown hair	brown hair
bh	BbHh	bBhh	bb th	bbhh
	brown eyes	brown eyes	blue eyes	blue
	brown hair	blonde hair	brown hair	blonde

4/16= blue eyes 25%

4/16= blonde hair 25%

a SL video reporter/blogger (on Youtube)

Part 1: 3-D VSEPR Theory Project

Part 2: NSF Lab Project

Go to google and search: youtube chemistry drax 19 or https://www.youtube.com/watch?v=twAi73JCXOM

OLES AND MASS	Name
I. 25 g of NoCl	0.43 mole
2. 125 g of H,SO,	1.28 moles
3. 100. g of KMnO,	0.633 mole
4. 74 g of KCI	0.99 mole
5. 35 g of CuSO,+5H,O	0.14 mole
etermine the number of gram	s in each of the quantities below.
1. 2.5 moles of NoCl	145 g
2. 0.50 moles of H ₂ SO,	499
3. 1.70 moles of KMnO,	2699
4. 0.25 moles of KCI	199
5. 3.2 moles of CuSO,+5H,O	800g

E MOLE AND VOLU	ME Nome	
gases at STP (273 K and 1 at me will the following quanti	m pressure), one mole occupies a volume a	122.4 L. What
1.00 mole of H ₂	22.4 L	
3.20 moles of O ₃	71.7 L	
0.750 mole of N ₂	16.8 L	
I. 1.75 moles of CO ₃	39.2 L	
5. 0.50 mole of NH ₃	11.2 L	
5. 5.0 g of H ₂	56L	
7. 100. g of O,	70.0 L	
8. 28.0 g of N,	22.4L	
9. 60. g of CO ₃	31 L	
10. 10. g of NH,	13 L	24

HE MOLE AND	Name	
One mole of a substance contains A	vogadro's Number (6.02 x 10 ^m) of r	nolecules.
ow many molecules are in the quantitie	s below?	
1.2 x 10	24	
2. 1.5 moles 9.0 x 1	023	
4.5 x	1023	
4. 15 moles 9.0 x 1	024	
5. 0.35 mole 2.1 x 1	10 ²³	
ow many males are in the number of m	olecules below?	
1.00)	
2. 1.204 x 104 2.00	>	
0.000	125	
1. 3.4x 10 ⁴ 560	>	
5. 7.5 x 10" 0 000)/2	

ANSW	ER
Name	PE
1. How many grams are there in 1.5 x 10 ²⁰ molecules of CO_s ? $I.I \times 10^3 g$	
2 What volume would the CO, in Problem 1 occupy at STP? 5.6 x 10 ² liters	2
3. A sample of NH, gas occupies 75.0 liters at STP. How many molecules is this? 2.02 x 10 ²⁴ molecules	3
4. What is the mass of the sample of NH, in Problem 3? 56.9g	-
5. How many atoms are there in 1.3 x 10 ²¹ molecules of NO ₂ ? 3.9×10^{22} atoms	-
6. A 5.0 g sample of O, is in a container at SIP. What volume is the container? 3.5 liters	
7. How many molecules of O, are in the container in Problem 6? How many otoms of axygen? 9.4×10 ²² molecules	
age 53	Pa

BIOLOGY warm ups for Thursday and Friday:

Thurs:Cross a woman carrier for hemophilia with a hemophiliacman. $X^h X^H$ = female carrier and the lower case h is recessive forhemophelia. $X^h Y$ = male hemophiliac

Friday:

You have type I^Ai blood and your spouse to be has type I^Bi blood. What types of blood would you expect your children to have and why?

Blood Type (Phenotype)	Genotype(s)
Type O	ii
Type A	I ^A I ^A or I ^A i
Туре <u>В</u>	I ^B I ^B or I ^B i
Type AB	I ^A I ^B

BABY DRAGONS!!

Step 1- get to know your pet dragon!

Green Autosomes					
GENOTYPES			Alleles in		
MOM	DAD		Egg	Sperm	n TRAITPh

Step 2- find a mate for your pet dragon!

Step 3- get to know your pet dragon's mate!

Step 4- FLIPing time! To determine the egg allele and then the sperm allele for each trait.

Step 5- determine the traits of your new baby dragon

Step 6- Draw a picture of your baby dragon

Step 7- Give your baby dragon a fitting name \bigcirc

Getting to know your pet dragon =)

My pet dragon is a ______ because I got a (pink/blue) sex chromosome. This means my pet dragon will be a (mommy/daddy) dragon!

My (lady/guy) dragon's AUTOSOMES (body chromosomes)

GREEN (if nothing, put a •) <u>https://www.youtube.com/watch?v=M1fZ74ieGRE</u>

FRONT	BACK	TRAIT held by this dragon

RED

FRONT	BACK	TRAIT held by this dragon

Orange

FRONT	ВАСК	TRAIT held by this dragon

Yellow

FRONT	ВАСК	TRAIT held by this dragon

MOLETOWN- chemistry

-must <u>clearly</u> show the calculations from one area to the next

-must include mole in the center

-must branch out to liters, grams, and particles

-must have a throughway for the nanobot to make it from one point to the next

-must have a way to change nanobot directions.

