SCIENCE PLANNER: WEEK OF 10.28.19

OBJECTIVES FOR THE WEEK:

Biology : Bio.3.3.1 Interpret how DNA is used for comparison and identification of organisms. Bio.3.3.2 Summarize how transgenic organisms are engineered to benefit society. Bio.3.3.3 Evaluate some of the ethical issues surrounding the use of DNA technology (including cloning, genetically modified organisms, stem cell research, and Human Genome Project).

Chemistry: Chm.2.1.1 Explain the energetic nature of phase changes. Chm.2.1.2 Explain heating and cooling curves (heat of fusion, heat of vaporization, heat, melting point, and boiling point). Chm.2.1.3 Interpret the data presented in phase diagrams.

DAILY AGENDA - (SUBJECT TO CHANGE)

https://evansccca.weebly.com/

DAY	Honors Biology	Honors Chemistry		
Mon 10.28	NOTES- pedigree and Rh factor.	GO OVER HW-phase diagrams NOTES- states of matter,		
	LAB! A murder MYSTERY	heating curves, Phase diagrams, exo/endo thermic		
	*HW= Pedigree pgs 33-35 in pkt	*HW= Temp vs. time graph for water states of matter		
Tues 10.29	NOTES- Genetic engineering	Finish notes: States of matter: <u>http://ths.sps.lane.edu/che</u> mweb/unit4/problems/phas		
	FINISH lab project: Blood type mystery.			
	<mark>HW= Steps and</mark>	edia/index.htm		
	diagrams for	*HW= online quiz (above)		
	gel	and pg 12-14 of pkt.		
	electrophoresis			

	, What's up with Laboradoodles ??	
Wed 10.30	Finish Genetic engineering notes. Electrophoresis lab?	QUIZ- Notes: Specific heat
	DRAGON BABIES LAB! *HW= Answer ALL questions on a separate sheet of paper. EACH of you draw an accurate baby picture of your dragon!!!!	 25 g ice cube from -22 degrees C to steam at 108 degrees C. Page 15 Quiz corrections
Thurs 10.31	Go over HW DRAGONS movie =) ACT practice graphing	Go over HW LAB- Heat of fusion paradigm lab
	*HW= answer the 9 questions and study for test.	*HW= finish lab and do the problems on the worksheet.#1,5,6,7
Fri 11.1	QUIZ- Pedigrees and genetics _DUE Monday #1-20 1pt for the answer 1pt for explanation	QUIZ and calorimetry HW & Lab presentations! *DUE mon= finish calorimetry problem and lab, research daylight savings

WARM UP ACTIVITIES

DAY	Warm up questions				
10/28	https://www.youtube.com/watch?v=905JQqIngFY				
	A mother is heterozygous + for Rh type blood, the father is also homozygous for - type RH blood. Make a punnet squa and explain the % chance of each blood for a baby.				
	https://www.youtube.com/watch?v=9z4vDaK29fg				
	What is entropy? What is sublimation?				
	Write an equation for an EXOTHERMIC physical change.				
	Write an equation for an ENDOTHERMIC physical change.				
10/29	Predict TWO possible motives the thief may have had to steal part of the inheritance.				
	What happens when the vapor pressure of a liquid gets high enough to reach atmospheric pressure?				
10/30	Draw a diagram of an electrophoresis set up and explain HOW DNA is sorted. Also explain what is used to make the movement of the DNA happen. <u>https://learn.genetics.utah.edu/content/labs/gel/</u>				
	What questions did you get wrong on the quiz? Do corrections on your warm up sheet (ok to use back).				
10/31	Do you think dragons could be real?? Why or why not?				
	A cup of water at 22°C has ice put in it then a 10 g cube of ice at 0°C is placed in it. What is the final temperature once the ice melts?				
11/1	If dragons really lived, explain how they				
	overcame the small wing to mass ratio.				

An Iron bolt with a mass of 30g is placed in boiling water and allowed to sit in it for 3 minutes. What is the temperature of the bolt when you take it out?

Calculations showing	Calculations showing
work and units of the	work and units of the
water <mark>LOSING</mark> heat	ice <mark>GAINING</mark> heat in
energy in Joules in	order to melt. Clearly
order for it to cool	box in your final
down in temperature.	answer of the mass.
"Before" picture	"After" picture
with cube of ice	with water at its
and temperature	final temperature
	right at the

separate	rate from cup moment the last			
of water	at °C.	piece of ice		
		melted.		

CHEM DUE MONDAY!!!!

CALORIMETRY PROBLEM:

A piece of metal weighing 59.047 g was heated to 100.0 °C and then put it into 100.0 mL of water (initially at 23.7 °C). The metal and water were allowed to come to an equilibrium temperature, determined to be 27.8 °C. Assuming no heat lost to the environment, calculate the specific heat of the metal. (Hint: First calculate the heat absorbed by the water then use this value for "Q" to determine the specific heat of the metal in a second calculation)

25% Draw a before picture and label with everything you know about it (example: you know boiling water is 100 deg. C)

25% Draw an after picture and label with everything you know about it

25% Show equations needed to set heat lost by metal equal to heat gained by cool water.

25% Show units and cancel to solve for the specific heat of the metal!!

D:50% A:29% _:7% E:14% C:7% A:64% C:14% D:7% D:7% DE:7% E:29% D:14% B:7% D:7% B:1% E:7% C:7% B:29% C:29% D:7% D:36% A:14% D:36% A:14% D:29% C:14% B:21% E:7%
E:14% C:7% A:64% C:14% D:7% D:7% DE:7% E:29% D:14% B:7% D:7% B:21% E:7% C:7% B:29% C:29% D:7% D:36% A:14% D:36% A:14% D:29% C:14% B:7% D:29% C:14% B:7%
A:64% C:14% D:7% D:7% DE:7% E:29% D:14% B:7% D:7% B:21% E:7% C:7% B:29% C:29% D:7% D:36% A:14% B:21% E:7% D:36% C:14% D:64% C:14% D:14% B:7% D:7%
C:14% D:7% D:7% DE:7% E:29% D:14% B:7% D:7% B:21% E:7% C:7% B:29% C:29% D:7% D:36% A:14% D:29% C:14% B:7% D:64% C:14% D:14% B:7% D:7%
D:7% DE:7% E:29% D:14% B:7% D:7% B:21% E:7% C:7% B:29% C:29% D:7% D:36% A:14% D:36% A:14% D:29% C:14% B:7% D:64% C:14%
E:29% D:14% B:7% D:7% B:21% E:7% B:29% C:29% D:7% D:36% A:14% D:29% C:14% B:7% D:29% C:14% D:29% C:14%
B:7% D:7% B:21% E:7% C:7% B:29% C:29% D:7% D:36% A:14% D:29% C:14% B:7% D:29% C:14% D:29% C:14% D:29% C:14% D:29% C:14% D:29% C:14% D:29% C:14% D:29% C:14%
B:21% E:7% C:7% B:7% E:7% B:29% C:29% D:7% D:36% A:14% D:29% C:14% B:7% D:29% C:14% D:24% C:14% D:14% B:7% D:7%
B:29% C:29% D:7% D:36% A:14% D:29% C:14% D:29% C:14% D:14% B:7% D:7%
B:29% C:29% D:7% D:36% A:14% B:21% A:14% D:29% C:14% B:7% D:64% C:14% D:14% B:7% D:7%
C:29% D:7% D:36% A:14% B:21% A:14% D:29% C:14% B:7% D:64% C:14% D:14% B:7% D:7%
D:36% A:14% B:21% A:14% D:29% C:14% B:7% D:64% C:14% D:14% B:7% D:7%
B:21% A:14% D:29% C:14% B:7% D:54% C:14% D:14% B:7% D:7%
D:29% C:14% B:7% D:54% C:14% D:14% B:7% D:7%
D:64% C:14% D:14% B:7% D:7%
D:14% B:7% D:7%
B:7% D:7%
C:36% B:7% D:7%
B:21%
B :86%
B:21% B:86%

Wastes from the blood is filtered through the glomerular membrane into a nephron. The movement of urea across this membrane occurs without an input of energy. Which factor is the MOST likely reason urea absorption does not require energy? A. a pH imbalance B. a pressure difference C. a temperature increase D. a concentration gradient

This graphic shows approximate worldwide distributions of different blood types. Note that for different locations and ethnicities figures vary from those shown in this distribution.

Describing heat changes in an equation

Endothermic

- ∆H is positive
- Energy is reactant (on the left)
- Feels cold around the change
- $H_2O_{(s)}$ + heat \rightarrow $H_2O_{(l)}$

_
$$H_2O_{(s)}$$
+ 334 J \rightarrow $H_2O_{(l)}$

ΔH = +334

- Exothermic
 - ΔH is negative
 - Energy is product (on the right)
 - Feels warm around the change.
 - $\quad H_2O_{(I)} \rightarrow H_2O_{(s)} + \text{ heat}$

$$- H_2O_{(I)} - 334J \rightarrow H_2O_{(s)}$$

$$- H_2O_{(I)} \rightarrow H_2O_{(s)} + 334J$$

Time

1. Using the data below, create a graph to demonstrate the heating curve of water. The water starts out as ice and is heated until it is all water vapor. When you are finished with the graph, label the areas on the graph as: ice, water, steam, melting, or evaporating. Don't forget to give it a title and completely label the axes. Then answer the questions below.

minutes	degree s Celcius	minutes	degree s Celcius	minutes	degree s Celcius	minutes	degree s Celcius
0	-15	9	15	18	60	28	100
1	-10	10	20	19	65	29	100
2	-5	11	25	20	70	30	100
3	0	12	30	21	75	31	100
4	0	13	35	22	80	32	100
5	0	14	40	23	85	33	100
6	0	15	45	24	90	34	105
7	5	16	50	25	95	35	110
8	10	17	55	26	100	36	115
				27	100		

Questions:

Q1: At what temperature does ice melt? How do you know? Q2: At what temperature does water boil? How do you know? Q3: Why doesn't the temperature of the water change while the ice is melting or boiling?

Q4: What is happening to the heat energy?

Hydrate lab, Mg lab, can crusher, ice lab, hot hands lab, balloon lab