Weekly Planner: All science week of $\mathbf{1 . 2 0 . 2 0}$

Objectives for the week: Chm.1.1.1 Analyze the structure of atoms, isotopes, and ions.
Phys 1.1.1 Analyze the nature of motion
$\left.\begin{array}{|l|l|l|}\hline \text { Day } & \text { Honors Physics } & \text { Honors Chemistry } \\ \hline \text { Mon } & \begin{array}{l}\text { Darkness cannot drive out darkness; only light can do that. Hate cannot } \\ \text { drive out hate; only love can do that. } \\ \text { ~Dr. Martin Luther King }\end{array} \\ \hline \text { Tues } & \begin{array}{l}\text {-Warm up } \\ \text {-Problems practice } \\ \text { *HW= use 4 1/2 pages to make } \\ \text { a COMPLETE and labeled } \\ \text { diagram of each problem, } \\ \text { show equations, and show all } \\ \text { work/units to solve. Do test } \\ \text { corrections! Answers below. }\end{array} & \begin{array}{l}\text { Notes: Atomic theory and } \\ \text { structure. } \\ \text {-isotopes, ions }\end{array} \\ \text { *HW= *FINISH all of atomic } \\ \text { structure packet. 4 pages } \\ \text { total or 2 pages front and } \\ \text { back of each!, do test } \\ \text { corrections! Answers below. }\end{array}\right]$

Warm Up activities! *Hw= show ALL work

to do all of them (graphs 1-4 including Carl Lewis).

Monday $1.20 .20=$

 https://evansccca.weebly.com/Darkness cannot drive out darkness; only light can do that. Hate cannot drive out hate; only love can do that.
~Dr. Martin Luther King

Tuesdav 1.21.20-

PHYZ Warm up: TURN OFF cell phone and put in the bin

A bicyclist steadily speeds up from rest to $10 \mathrm{~m} / \mathrm{s}$.
Determine the initial speed, average speed and final speed during the
time interval.
\square

CLEM Warm up: I.21.2020

Turn OFF your cell phone and put in bin :
Conversion Factors:
3 bops $=5$ yips
20 nerds $=8 \mathrm{cams}$
2 cams $=1$ bleep
2 nerds $=3$ tongs
1 bop $=5$ cams

1) How many bops are in 22.5
cams?

Wednesday 1.22.20-

https://evansccca.weebly.com/

PHYZ Warm up:
Turn OFF your cell phone and
put in bin :3
A bicyclist, initially traveling at 1
$\mathrm{~m} / \mathrm{s}$, begins pedaling and gaining
speed steadily for 5.0 seconds
during which she accelerates at
$0.5 \mathrm{~m} / \mathrm{s}^{2}$.
What is her final velocity?
What is her average velocity during
the 5 seconds?

CHEM Warm up:
 Turn OFF your cell phone and put in bin (3)
 If you do an experiment that finds the density of copper to be 9.52 $\mathrm{g} / \mathrm{cm}^{3}$. What is your \% error?

Metal	Specific Heat $\frac{\mathrm{J}}{\mathrm{g}^{\circ} \mathrm{C}}$	Density $\left(\mathrm{g} \mathrm{cm}^{3}\right)$	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$
Aluminum	0.897	2.702	660
Copper	0.385	8.92	1083
Gold	0.129	19.31	1064

Thursday 1.23.20-

PHYZ Warm up:
Turn OFF your cell phone and
put in bin :3
From Wednesday's problem, how
far did she go?

CHEM Warm up:

Turn OFF your cell phone and put in bin (:)
1.What is the a.m.u unit based on?
2.What is a group on the periodic table?
3.What is a period?

Friday 1.24.19-

 https://evansccca.weebly.com/PHYZ Warm up:
Turn OFF your cell phone and put in bin :
Pick the most difficult problem from the homework and solve using work and UNITS on this paper.

CHEM Warm up:
Turn OFF your cell phone and put in bin (3)
Write the chemical symbol for an element with 8 protons 9 neutrons and 10 electrons.
ters per second2 in the direction of its motion
for a distance of 5.0 meters. What is the final
speed of the object? ANSwEr: (1) $6.0 \mathrm{~m} / \mathrm{s}$
14. An astronaut drops a hammer from 2.0 me-
ters above the surface of the moon. If the acceleration due to gravity on the moon is 1.62 meters per second2, how long will it take for
the hammer to fall to the moon's surface? Answer: (3) 1.6 s
15. The average speed of a runner in a 400. -meter
race is 8.0 meters per second. How long did it take the runner to complete the race? Answer: (2) 50 . s
16. Which statement about the movement of an
object with zero acceleration is true? Answer: (4) The object may be in motion.
17. An object travels for 8.00 seconds with an av-
erage speed of 160 , meters per second. The distance traveled by the object is ANswer: (3) 1280 m
18. An object is displaced 12 meters to the righ of the resultant displacement is Answer: (3) 20 m
19. An object moves a distance of 10 meters in 5 seconds. The average speed of the object is Answer: (2) $2.0 \mathrm{~m} / \mathrm{s}$
20. The graph following represents the relation-
ship between velocity and time for an object moving in a straight line.

What is the acceleration of the object?
ANswer: (1) $0 \mathrm{~m} / \mathrm{s}^{2}$
21. Acceleration is a vector quantity that repreAnswer: (2) velocity
22. A moving body must undergo a change of Answer: (3) position
23. What is the magnitude of the vertical compo-
nent of the velocity vector shown below?
34. Which graph represents an object moving at a
constant speed for the entire time interval?
he car from $t=2.0$ seconds to $t=4$ seconds? ANSWER: (3) 120 m
31. The displacement-time graph below represents the motion of a cart initially moving for-
ward along a straight line ward along a straight line

During which interval is the cart moving forward at constant speed?
Answer: (2) BC
32. Which graph best represents the relationship between velocity and time for an object that
accelerates uniformly for 2 seconds, then moves at a constant velocity for 1 second, and finally decelerates for 3 seconds?

Time (s)
\qquad Answer: (1)
33. The graph below represents the motion of an object traveling in a straight line as a function
of time. What is the average speed of the object during the first 4 seconds?

Answer: (3) $0.5 \mathrm{~m} / \mathrm{s}$

ANswer: (4) $40 . \mathrm{m} / \mathrm{s}$
24. The maximum number of components that a single force may be resolved into is Answer: (4) unlimited
25. Which quantity has both magnitude and direction?
Answer: (4) velocity
26. If a man walks 17 meters east then 17 meters south, the magnitude of the man's displaceAnswer: (2) 24 m

PART B-1: Pages 16-18
27. Which graph best represents the motion of a
block accelerating uniformly down an inblock acceleration plane?
cline

Time
(2)
SwEr: (4)
28. Which pair of graphs represents the same mo-
tion of an object?

(1)

(2)
38. What is the total distance traveled by the object during the firs
ANswer: (3) 25 m
39. During which interval is the object's accelera tion the greatest?
Answer: (1) AB
40. During the interval $t=8 \mathrm{~s}$ to $t=10 \mathrm{~s}$, the speed
of the object is of the object is
decreasing
41. What is the maximum speed reached by the object during the 10 seconds of travel? ANSWER: (2) $25 \mathrm{~m} / \mathrm{s}$
Base your answers to questions 42 through 46 on the accompanying graph, which represents
the motions of four cars on a straight road.

2. The speed of car C at time $t=20$ s is closest Answer: (1) $60 \mathrm{~m} / \mathrm{s}$
43. Which car has zero acceleration?

Answer: (2) B
4. Which car is decelerating?
44. Which car is dece
45. Which car moves the greatest distance in the
time interval $t=10 \mathrm{~s}$ to $t=16 \mathrm{~s}$?
Answer: (1) A
46. Which graph best represents the relationship
between distance and time for car C ?

Answer: (2)
PART A: Pages 20-21
7. The diagram below shows a worker using a ope to pull a cart.

(3)

Answer: (1)
29. The graph below represents the relationship between speed and time for an object moving along a straight line.

What is the total distance traveled by the ob ject during the first 4 seconds? Answer: (3) 40 m
30. The graph below shows the velocity of a race car moving along a straight line as a function
of time.

heworkers puifon he handle of the cart can
best be described as a force having Answer: (3) both magnitude and direction
8. Which is a vector quantity?

ANsWER: (4) force
49. A 5.0-newton force and a 7.0-newton force act concurrently on a point. As the angle between the forces is increased from 0° to 180°, the changes from
Answer: (3) 12.0 N to 2.0 N
50. A 5.0 -newton force could have perpendicular components of
51. Forces \mathbf{A} and \mathbf{B} have a resultant \mathbf{R}. Force \mathbf{A} and
resultant \mathbf{R} are represented in the following

Answere (2)
52. Two 10.0 -newton forces act concurrently on a point at an angle of 180° to each other. The
magnitude of the resultant of the two forces is Answer: (1) 0.00 N
53. A force of 3 newtons and a force of 5 newtons act concurrently to produce a resultant of
8 newtons. The angle between the forces may be
Answer: (1) 0°
54. A table exerts a 2.0 -newton force on a book lying on the table. The force exerted by the book on the table is
Answer: (2) 2.0 N
55. The diagram represents two concurrent forces acting on a point.

Which vector best represents their resultant?

Answer: (4)
56. The resultant of two forces acting on the same point at the same time will be greatest when the angle between the forces is
Answer: (1) 0°
57. What is the magnitude of the vector sum of the two concurrent forces represented in the diagram?

ANSWER: (2) 2.5 N
58. The resultant of two concurrent forces is minimum when the angle between them is
Answer: (4) 180°
59. As the angle between two concurrent forces of 10 newtons and 12 newtons changes from 180° to 0°, the magnitude of their resultant changes from
Answer: (2) 2.0 N to 22
60. Two concurrent forces act at right angles to each other. If one of the forces is 40 newtons and the resultant of the two forces is 50 newtons, the magnitude of the other force must be Answer: (3) 30 N
61. If two 10 .-newton concurrent forces have a resultant of zero, the angle between the forces must be
ANSWER: (4) 180°

PART B-1: Pages 21-22

62. The diagram below shows a force of magnitude F applied to a mass at angle θ relative to a horizontal frictionless surface.

As the angle is increased, the horizontal acceleration of the mass
Answer: (1) decreases
63. The diagram below represents a 5.0 -newton force and a 12-newton force acting on point P.

The resultant of the two forces has a magnitude of
ANSWER: (4) 13 N
64. The vector diagram below represents two forces, \mathbf{F}_{1} and \mathbf{F}_{2}, simultaneously acting on an object.

Which vector best represents the resultant of the two forces?

(1)

(2)

(3)
(4)

Answer: (2)
65. Two 30.-newton forces act concurrently on an object. In which diagram would the forces produce a resultant with a magnitude of 30 . newtons?

(1)

(3)

(2)

(4)

Answer: (3)

ZIPGRADE ANSWERS from 1.17.2020

Phyz		Chem	
\#	Answer	\#	Answer
1	E	1	D
2	A	2	B
		3	E
3	B	4	B
4	C	5	A
		6	C
5	C	7	E
			A
6	A	9	D
7	AC	10	C
8	C	11	
		12	A
9	C	13	D
		14	D
10	A	15	A
		16	C
11	D	17	B
12	C	18	A
13	C	19	C
14	A	20	B
15	B	21	A
16	D	22	B
17	B	23	C
18	D	24	B
		25	D
19	B	26	C
20	C	27	A
		28	B
		29	A
		30	A

GRAPHS OF MOTION COMPARED

Fill each grid space with an appropriately concise answer.

Calculate Atomic Mass Given the data in the table, calculate the atomic mass of unkown Element X. Then, identify the unkown element, which is used medically to treat some mental disorders.

1 Analyze the Problem

Calculate the atomic mass and use the periodic table to confirm.

Known

${ }^{6} \mathrm{X}$: mass $=6.015 \mathrm{amu}$
abundance $=7.59 \%=0.0759$
${ }^{7} \mathrm{X}$: mass $=7.016 \mathrm{amu}$
abundance $=92.41 \%=0.9241$

Unkown

atomic mass of $X=$? amu
element $\mathrm{X}=$?

Isotope $\mathbf{A b u n d a n c e}$ for Element \mathbf{X}		
Isotope	Mass (amu)	Percent Abundance
${ }^{6} \mathrm{X}$	6.015	7.59%
${ }^{7} \mathrm{X}$	7.016	92.41%

2 Solve for the Unknown

$$
\begin{array}{ll}
{ }^{6} \mathrm{X}: \text { mass contribution }=(\text { mass })(\text { percent abundance }) & \text { Calculate }{ }^{6} \mathrm{X} \text { 's contribution. } \\
\quad \text { mass contribution }=(6.015 \mathrm{amu})(0.0759)=0.4565 \mathrm{amu} & \text { Substitute mass }=\mathbf{6 . 0 1 5} \mathrm{amu} \text { and abundance }=\mathbf{0 . 0 7 5 9} . \\
{ }^{7} \mathrm{X}: \text { mass contribution }=(\text { mass })(\text { percent abundance }) & \text { Calculate }{ }^{7} \mathrm{X} \text { 's contribution. } \\
\quad \text { mass contribution }=(7.016 \mathrm{amu})(0.9241)=6.483 \mathrm{amu} & \text { Substitute mass }=7.016 \mathrm{amu} \text { and abundance }=\mathbf{0 . 9 2 4 1} . \\
\text { atomic mass of } \mathbf{X}=(0.4565 \mathrm{amu}+6.483 \mathrm{amu})=\mathbf{6 . 9 3 9} \mathrm{amu} & \text { Total the mass contributions to find the atomic mass. } \\
\text { The element with a mass } 6.939 \mathrm{amu} \text { is lithium }(\mathrm{Li}) . & \text { Identify the element using the periodic table. }
\end{array}
$$

Physics motion class practice:

A bicyclist steadily speeds up from rest to $10 \mathrm{~m} / \mathrm{s}$.
Determine the initial speed, average speed and final speed during the time interval.

A student releases a marble from the top of a 180 cm ramp. The marble increases speed steadily and reaches the bottom of the ramp with a speed of $140 \mathrm{~cm} / \mathrm{s}$. Determine all unknowns and answer the following question.

How long did the marble take to reach the bottom of the ramp? \square

A bicyclist, initially at rest, begins pedaling and gaining speed steadily for 5.9 s during which she covers 37 m.

What was her final speed?

An engineer is designing a runway. She knows that a plane, starting at rest, needs to reach a speed of 200 mph at takeoff. If the plane can reach this take-off speed in 70 s, how far will the plane travel before take-off. Assume the plane increases speed steadily.

How far does the plane need to travel during take-off (in given units)?

Could the plane take off on a 10000 ft long runway?
\square

GRAPHS OF MOTION COMPARED

Fill each grid space with an appropriately concise answer.

PHYSICS speed problems: *Always make a model/diagram/graph of your problem. Then show all work and units to solve!! Use a separate sheet of paper.

1	A bicyclist steadily speeds up from rest to $10 \mathrm{~m} / \mathrm{s}$. Determine the initial speed, average speed and final speed during the time interval.
2	A student releases a marble from the top of a 180 cm ramp. The marble increases speed steadily and reaches the bottom of the ramp with a speed of $140 \mathrm{~cm} / \mathrm{s}$. Determine all unknowns and answer the following question. \square

3	A bicyclist, initially at rest, begins pedaling and gaining speed steadily for 5.9 s during which she covers 37 m . What was her final speed?
4	An engineer is designing a runway. She knows that a plane, starting at rest, needs to reach a speed of 200 mph at take- off. If the plane can reach this take-off speed in 70 s , how far will the plane travel before take-off. Assume the plane increases speed steadily.
How far does the plane need to travel during take-off (in given units)?	
5	A car moving at 22 m/s to the right skids to a stop in 4.0 seconds. a) What is the average velocity? b) In which direction is the velocity vector in this problem? c) In which direction is the acceleration vector in this problem?

